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Via Di Biasio 43, I-03043, Cassino (FR), Italy
E-mail: albanese@unirc.it, rubinacci@ing.unicas.it, villone@ing.unicas.it

Received August 3, 1998; revised February 24, 1999

In this paper an innovative technique is described to solve the electromagnetic
problem in the presence of a cracked conductor. Both the direct problem (given
the crack, compute the scattered field) and the inverse problem (given the external
measurements, obtain the crack position and shape) are dealt with. The features of an
integral formulation in terms of a two-component electric vector potential expanded
over edge elements are fully exploited. The resulting method proves to be extremely
efficient, also thanks to the binary nature of the unknown. In this paper we restrict
our attention to a class of problems, namely the eddy current testing for thin cracks
in non-magnetic metallic plates, but the method can be extended to more general
cases. c© 1999 Academic Press
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I. INTRODUCTION

Eddy current testing (ECT) is a non-destructive evaluation (NDE) technique that is gain-
ing increasing interest as a key technology in the detection of small cracks in conductive
specimen. Its main applications regard the analysis and testing of metallic components
employed in transportation, nuclear, and other industrial plants [1]. The method is based
on the detection of the magnetic field due to the eddy currents induced on the specimen.
The presence of a defect modifies the eddy current pattern and hence gives rise to a field
perturbation closely related to the position and shape of the defects. Thanks to a strong
industrial concern, this kind of problem has been of considerable interest in the last years
also from the computational viewpoint. This attention is well understood if one takes into
account that fast and precise numerical methods are needed to post-process the magnetic
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measurements in order to attain an improved evaluation of the geometric characteristics of
the flaw.

From the computational point of view, a direct and an inverse problem have to be solved.
The direct problem consists of the evaluation of the field perturbation at the measurement
probe locations, for a given exciting field and geometry of the flaw (or flaws). In the inverse
problem, one has to find the position and the shape of the flaw(s), assuming the measurements
and the forcing field as known quantities.

The inverse problem is non-linear and ill-posed. It is well known that a problem is well-
posed in the sense of Hadamard if a solution exists, is unique, and depends continuously
on the data. These aspects for the inverse electromagnetic problems have been studied
by several authors. Here we just mention Colton and Kress [2], Colton and Paivarinta
[3], Isakov [4], and Yamamoto [5]. Stability is usually achieved by means of suitable
procedures like Tikhonov’s regularization. Namely, a priori information about the solution
is added and the problem is reformulated in order to restrict the set in which the solution
is to be found. In the NDE, the problem is usually reformulated as the minimization of
an error functional expressing the distance between computed and measured field values,
with suitable assumptions about the solution (e.g., regularity, positiveness, topology of the
support, etc.).

Solution of the inverse problem is the key objective in NDE. The success of any inversion
procedure requires fast and accurate solutions of the forward problem. Basically, there
are three main approaches to the numerical solution of this problem. The straightforward
application of standard finite element techniques based either on differential or integral
formulations [6], although easy to apply, often suffers from several drawbacks. In fact,
the defect geometry and related field perturbations are very localized and impose severe
constraints on the discretization of the specimen and, in some cases, of the region occupied
by exciting sources and field sensors. A second approach is based on an integral formulation
[7–10] specifically derived to deal with this kind of problem and numerically approximated
by the method of moments. In this case, the unknowns are the equivalent sources consisting
of volume current dipole distributions, usually approximated by piecewise constant vector
pulse functions. In the integral equation, the dyadic Green’s kernel already takes into account
the correct continuity condition at the air/conductor interface, so that the discretized domain
is limited to the flaw region. On the other hand, the need for an explicit knowledge of the
Green’s functions restricts the shape of the conductor to simple canonical geometries, such
as a layered half space, an infinite cylinder, or a sphere [11,12].

Another formulation has been recently proposed and successfully applied [13–15] to
keep the advantages of the integral approach without suffering from the restriction rep-
resented by the required knowledge of the analytic expression of Green’s functions. The
method is based on a differential formulation where the Green’s function is numerically
calculated using the solution of the field problem in the unflawed conducting domain.

The inverse problem related to the reconstruction of the geometric and physical character-
istics of the defect requires, as already said, the minimization of an error functional related
to the scattered field in the region outside the specimen. Strong difficulties arise since the
possible presence of local minima requires global optimization procedures, such as simu-
lating annealing or genetic algorithms that work efficiently only with a limited number of
unknowns.

The problem of understanding the causes of the occurrence of local minima has been
studied in [16], with reference to a quadratic expansion of the operator relating the scattered



738 ALBANESE, RUBINACCI, AND VILLONE

field to the conductivity [17,18]. In the frame of this approach, a generalization of the well-
known linear Born approximation, it has been shown that the presence of local minima is
related to the ratio between the essential dimension of the subspace of data and the number
of unknowns.

Deterministic methods used to find the solution of the inverse problem are usually based
on gradient algorithms. In these cases, the gradient, or sensitivity, of the error functional
with respect to the unknowns is often computed using the adjoint equation technique [19].

In summary, the main difficulties of the approaches mentioned above are the treatment of
thin cracks, the need for a numerically consistent field representation (instead of pulse basis),
time consuming forward solutions, unavailability of Green’s functions, high discretization
costs in the differential approaches, and the presence of a large number of unknowns in the
inverse problem.

In this paper, to overcome these difficulties, we propose a numerical method for the
reconstruction of thin cracks based on an efficient integral formulation in terms of a two-
component current density vector potential [20] which takes advantage of the edge element
representation of the field unknowns. Using superposition, the forward problem is reformu-
lated as the determination of the modified eddy current pattern due to the presence of the
defect. In particular, since the total current density has to be zero in the crack region, the
variation of the current density is imposed to be just the opposite of the unperturbed one in
the crack region, giving the known source term of an integral equation to be solved only
around the crack. This fast algorithm to solve the forward problem is the key step of the
inversion procedure. When generating the solution corresponding to a candidate flaw only
a very small part of the whole matrix describing the model must be inverted.

The paper is organized as follows. Section II summarizes the main features of the integral
formulation along with its discrete approximation. Sections III and IV discuss the proposed
method, with reference to the direct and inverse problem, respectively. In Section V, the
method is tested against some experimental results. In Section VI some final comments and
conclusions are presented.

II. FORMULATION

The mathematical model consists of the set of the eddy current equations in linear non-
magnetic media,

∇ × E = −∂B/∂t in Vc (1)

∇ × H = J in Vc (2)

B = µ0H in Vc (3)

J = σE+ Js in Vc, (4)

whereE is the electric field,H is the magnetic field,B is the magnetic flux density,J is the
current density,Js is the impressed current density,σ is the electrical conductivity, andµ0

is the vacuum magnetic permeability.
Here,Vc is the conducting domain, i.e., the region of space whereσ 6= 0, which will

be supposed simply connected in the following to fix the ideas. OutsideVc, the following
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equations hold:

∇ · B = 0 outsideVc (5)

∇ × H = Js outsideVc (6)

B = µ0H outsideVc. (7)

Of course, a suitable set of initial, boundary, and interface conditions must be imposed.
The formulation recalled here is presented in detail in [20, 21]. First of all, the following

expression is used for the electric field, which automatically enforces Faraday’s law,

E = −∂A/∂t −∇ϕ, (8)

whereϕ is the electric scalar potential andA is the magnetic vector potential defined by
Coulomb gauge,

B = ∇ × A, ∇ · A = 0 (9)

which can be linked to the unknown current density by

A(x, t) = µ0

4π

∫
Vc

J(x′, t)
|x− x′| dV′ + As(x, t), (10)

whereAs is the vector potential due to the known sourceJs.
The second step is imposing Ohm’s law using the weighted residual approach,∫

Vc

(ηJ− E) ·W dV = 0, J ∈ S, ∀W ∈ S, (11)

whereη= 1/σ is the electric resistivity,S={J ∈ L2
div(Vc),∇ · J= 0 in Vc, J · n= 0 on

∂Vc}, andL2
div(Vc) is the space of vector fields that are square integrable inVc together

with their divergence. Note that the conditionJ ∈ S, which implies the continuity of the
normal component ofJ, comes from (2) and the continuity of the tangential components
of H. On the contrary, the condition that also the weighting functionW ∈ S is a numerical
choice, which allows us to remove the contribution of the electric scalar potential in (11),
that becomes∫

Vc

W ·
(
ηJ− ∂

∂t

(
µ0

4π

∫
Vc

J(x′, t)
|x− x′| dV′ + As(x, t)

))
dV, J ∈ S, ∀W ∈ S. (12)

As a consequence, the electric scalar potential disappears from the formulation, and no
potential jump must be considered on∂Vc.

The next step is the numerical solution of (12). A discretization of the conducting domain
is given in terms of a finite element mesh. The conditionJ∈ S is imposed expanding
J= ∑k IkJk on a set of basis functionsJk which in turn belong toS. This is guaranteed by
introducing the electric vector potentialT, such that∇ × T = J, and expanding it on an
edge element basisN j , asT =∑ j I j N j [21]. Doing so, the coefficientI j is the line integral
of T along the edgej . The uniqueness ofT is guaranteed by means of the two-component
gauge [22, 21],

T · w = 0, (13)
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wherew is an arbitrary vector field with no closed field lines. The imposition of this gauge
is very conveniently implemented using a tree–cotree decomposition of the graphG made
of the nodesN and the edgesE of the mesh [20, 21]. The vector fieldw is chosen such
that its field lines are along the branches of a treeT, which does not close any loop by
definition. Hence, the coefficientsI j linked to all the branches of the tree vanish, and only
the coefficients related to the edges of the cotreeC = G − T are retained. Any of these
coefficients, sayIk, is then the current flux linked by the loop closed by the edgek of the
cotree with the branches of the tree.

It is also straightforward to enforce the additional condition required to the functions
of S:

J · n = 0 on∂Vc. (14)

Let Gb be the subgraph ofG including only boundary nodes (Nb) and edges (Eb). Using a
sequential algorithm, it is always possible to selectT so thatT ∩ Eb is a tree forGb [20].
With such a choice, for a simply connected region, all the cotree edges on the boundary
(C∩Eb) close loops completely laying on∂Vc, and therefore the corresponding coefficients
must vanish.

As a consequence, the basis functionsJk = ∇ ×Nk of the current density automatically
belong toS, and so doesJ. The degrees of freedomIk of the expansion

J =
∑

k

Ik∇ × Nk (15)

have the following property. Given a mesh facetf , letk1, . . . , kr be the indices of the active
(i.e., non-vanishing) edges which are part of the contour∂ f of f . Then, the current flux
through f is simply

G f = ±Ik1± · · · ± Ikr , (16)

where the signs depend on the relative orientation of the edges and∂ f .
Adopting the Galerkin method, i.e., choosing theW’s equal to the basis functionsJk’s,

Eq. (12) can be written as

L
dI
dt
+ RI = V, (17)

whereI = {Ik},V = {Vk}, and

Li j = µ0

4π

∫
Vc

∫
Vc

∇ × Ni (x) · ∇ × Ni (x′)
|x− x′| dV dV′ (18)

Ri j =
∫

Vc

∇ × Ni (x) · η∇ × N j (x) dV (19)

Vi = − ∂
∂t

∫
Vc

∇ × Ni (x) · As(x) dV. (20)

Of course, if a sinusoidal steady state must be studied (which is common practice in elec-
tromagnetic non-destructive evaluation), the impedanceZ = (R+ jωL) can be introduced,

(R+ jωL)I = V, (21)

where the elements ofI andV are phasors.
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III. SOLUTION OF THE DIRECT PROBLEM

Simplifying Assumptions

As mentioned above, we restrict our attention to a class of problems, namely the eddy
current testing for thin cracks in non-magnetic metallic plates.

The first assumption is that the thickness of the defect is small when compared not only
to its depth and width but also to the skin depth at the exciting frequency. This allows
us to schematize the defect as a zero-thickness crack, i.e., as a surface across which the
current flow is forbidden. Anyway, the present method can be easily extended to the case
of volumetric flaws.

The absence of non-linear media allows us not only to use the integral formulation
described in Section II but also to exploit superposition and reciprocity to improve the
accuracy of the numerical results for a given computation effort.

Solution of the Flawless Problem

First, we calculate the solution of the electromagnetic problem without the flaw. Ana-
lytical solutions are available for particular forms of the conducting structures, e.g., for an
indefinite plate [23]. These analytical solutions provide acceptable approximations in most
practical cases.

Otherwise, if the edge effects are not negligible, or the shape of the specimen is not
canonical, the unperturbed field can be determined numerically by means of the technique
illustrated in Section II. Expanding the current density asJ0=

∑
I0kJ0k, Eq. (21) yields

Z0I0 = V0, (22)

whereZ0 = R0+ jωL0 is the impedance matrix, andV0 is the applied voltage. The subscript
0 indicates that the shape functions, the matrices, and the solution coefficients are calculated
in the absence of the crack.

Calculation of the Modified Eddy Current Pattern

The second step for the solution of the forward problem is the determination of the
modified eddy current pattern due to the presence of the defect. A thin crack can be described
as a surface6d, discretized via a set of finite element faces characterized by the constraint

J · n = 0, (23)

wheren is the normal unit vector on the face.
To solve a single problem in the presence of a well defined flaw, it is possible to treat

∂Vc ∪6d with the technique described in Section II to deal with condition (14). However,
it is often required to solve the direct problem several times for the same specimen with
different defects, e.g., when solving the inverse problem. In this case the above technique is
not efficient at all, because the change of6d implies redefinition of the tree and reassembling
of the matrices. For this reason we adopt the following method.

The flux ofJ=∇ ×T across any elementary face is given by the circulation ofT along the
edges identifying the face. As the values of the unknownsIk’s represent the line integrals
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of T along the active edges, the net current crossing an elementary face is given by the
algebraic sum of the unknowns associated with the active edges of the face [24],

G = PI , (24)

whereG is the set of net currents crossing them facets of6d, andP is a (m, n) sub-matrix
of the edge-facet incidence matrix with coefficients 0,+1, or−1.

In principle, the desired result might be obtained by calculating the eddy current density
induced by the exciting coil in the presence of the crack, obtaining the corresponding signal,
and subtracting the signal obtained without the flaw. However, to avoid cancellation errors,
we exploit superposition, assuming directly the variationδJ of the eddy current density as
unknown,

J = J0+ δJ. (25)

We also expandδJ in terms of the solenoidal shape functions used for the flawless plate:

δJ =
∑

k=1,n

δ IkJ0k. (26)

However, to satisfy Eq. (23), the variation of the normal component of the current density
must be just the opposite of the unperturbed one across the crack. We therefore impose the
constraint

PδI = −G0, (27)

where

G0 = PI0 (28)

is the set of unperturbed currents crossing the crack facets.
In this case, the unknown can be expressed as

δI = KδX + δI p, (29)

whereK is a (n, n−m) matrix given by an orthonormal basis for the null space ofP, δI p

is an arbitrary solution of Eq. (27), andδX is an auxiliary variable.
A possible choice forδI p is provided by pseudo-inversion of system (27),

δI p = SδG, (30)

whereδG = −G0 andS = P+. In this way Eq. (29) becomes

δI = KδX + SδG. (31)

This allows us to expressδI in terms of then−m unknown vectorδX and them known
vectorδG=−G0. Hence, the problem becomes findingδX. However, we cannot use Eq. (12)
with the n J0i ’s as weighting functions, unless we explicitly introduce the jump of the
scalar potential across the crack, since they do not fulfill constraint (23). A more efficient
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alternative is to consider a set of weighting functions satisfying Eq. (23) across the crack.
These are readily obtained observing thatPKδX= 0 for anyδX. As a consequence, a set
of independent weighting functions is given by the linear combinations ofJ0k’s with the
coefficients of the columns ofK, i.e., then−m rows ofKT. The corresponding linear system
for the calculation ofδJ is therefore

KTZKδX = −KTZSδG. (32)

The eddy current perturbation is finallyδJ =∑k=1,nδ IkJ0k, whereδX is calculated from
Eq. (32) andδI is obtained from (31).

Calculation of the Perturbed Signals

From the eddy current perturbationδJ =∑δ Ik∇×Nk we may compute the reaction field.
In particular, the impedance change of the exciting coil is given by any of the expressions

δZ = jω
∫

Ds
δA · Js dV

/
I 2
s (33)

δZ = jω
∫

Dc
As · δJ dV

/
I 2
s (34)

δZ = −VT
0δI
/

I 2
s , (35)

whereδA is the magnetic vector potential due toδJ.
Equation (33) is the standard expression, whereas Eqs. (34) and (35), which generally

yield more accurate results, are obtained using reciprocity. Equation (35) can be used if the
unperturbed problem has been solved numerically.

IV. SOLUTION OF THE INVERSE PROBLEM

When solving the direct problem the position of the crack is knowna priori. Hence,
theP matrix is constructed only on the mesh facets which belong to the crack itself, and
only the equations regardingδX must be written, sinceδG is equal to the opposite of the
unperturbed current flux vector−G0.

Conversely, the inverse problem consists of finding the unknown position and shape of
the crack from the knowledge of some external measurements. From our point of view, we
must find which is the set of mesh facets belonging to the crack. As a consequence, for
each facet of the mesh we must understand whether it is part of the crack or not. It is worth
noticing that the problem involves a binary decision: once we have ascertained that a facet
indeed belongs to the crack the value of the current flowing through it is known, since it
must be the opposite of the unperturbed current. On the contrary, if the facet is not part of
the flaw, the value of current flow is unknown. Of course, such a “bitmap” description of
the crack is expected to get more and more accurate as the discretization gets finer.

Moreover, we will assume that it is possible, from the external electromagnetic mea-
surements, to gain rough information about the zone of the specimen where the crack is
presumably located. Once this has been attained, one may perform a higher number of
measurements only close to this region. In this way, the inverse problem that we tackle
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is

find the position and shape of the crack starting from some electromagnetic external
measurements and some a priori rough information about the region where the crack
is presumably located.

This method is a common practice in standard eddy current non-destructive evaluation
[25, 26].

Finally, some considerations are called for about the fact that the problem is ill-posed.
As mentioned in the Introduction, the solution of the inverse problem needs regularization
by restricting the set in which we look for the solution. In our approach the regularization
acts at the following levels.

(a) The unknown is binary, i.e., for each facet of the mesh we must decide whether it
belongs to the crack or not. This feature of the method eliminates all the possible solutions
corresponding to intermediate situations in which the facet can be partially crossed by
currents.

(b) We have identified the zone where the crack is located. This means that we are
disregarding all the spurious solutions corresponding to non-physical cracks located in a
region where we know a priori that no defects are present.

(c) Further steps in this direction of reducing the space of the unknown may be done for
each single problem. For instance it may be possible to assume that the defect is superficial
and simply connected. In Section V we will give some further hints, when presenting the
results of the inverse problem.

From the above considerations the following strategy comes out for the solution of the
inverse problem. First of all, we identify the setT of all possible candidate crack facets,
i.e., the set of all mesh facets which could possibly belong to the crack. Then, we calculate
G0 and theP matrix on this set and we perform the variable change just as in the case of
the direct problem. However, now not all theδG are known, since only some of them will
belong to the crack. Hence, the inverse problem can be reformulated as

find the subsetB⊆ T such that the solution obtained imposing
δGB=−G0B gives the best fit to the experimental data,

whereδGB(G0B) are the current fluxes (unperturbed current fluxes) through the mesh facets
belonging toB.

Because of the particular nature of this problem, a binary optimization technique seems to
be particularly suitable. Indeed, what must be found is the bit string codifying which facets
of T belong toB. Examples of such methods are the genetic algorithms. The key to these
techniques is making successive tentative choices for the subsetB, refining at each step.

Hence, a fast method for solving the direct problem corresponding to each tentative
choice must be available. Now, we discuss the method for solving the problem once the
subsetB has been chosen on the basis of the optimization strategy.

Let F = T − B be the set of facets belonging to the tentative setT but not to the crack
B. The corresponding current fluxesδGF are not knowna priori, and hence the relative
equations must be imposed, together with the equations corresponding toδX, which are
unknown, as in the direct problem.

In other words, first of all we define

ZX X = KTZK; ZXG = ZT
G X = KTZS; ZGG = STZS. (36)
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Then, we say that by substituting the subscriptG with B or F we obtain the submatrix
resulting from considering only the rows or the columns relative to the facets belonging to
B andF , respectively: for instance,ZX F is the submatrix ofZXG obtained by selecting the
columns corresponding to facets belonging toF .

Finally, we can write

ZX XδX + ZX FδGF + ZX BδGB = 0 (37)

ZF XδX + ZF FδGF + ZFBδGB = 0, (38)

where

δGB = −G0B. (39)

System (37)–(38) must be solved in order to obtain the unknownsδX andδGF for a given
subsetB.

ObtainingδX from (37)

δX = −(ZX X)
−1ZXGδG = −(ZX X)

−1(ZX FδGF + ZX BδGB) (40)

and substituting in (38), taking account of (39), we obtain

Z′F FδGF = Z′FBG0B, (41)

whereZ′F F =ZF X(ZX X)
−1ZX F − ZF F andZ′FB=ZF X(ZX X)

−1ZX B − ZFB.
Hence, we can find(ZX X)

−1ZXG andZ′GG=ZG X(ZX X)
−1ZXG− ZGG once and for all;

Z′F F andZ′FB are suitable submatrices ofZ′GG. Then, only the matrixZ′F F must be inverted
at each step in order to findδGF , and only a matrix-by-vector product is needed forδX.
OnceδX andδG are known, it is possible to get the original unknownsδI from (31) and in
turn any other possible output variable (field measurements, impedance variation, etc.).

If we know roughly which is the zone of the specimen where the crack is located, then
the numbernT of facets belonging toT will be much smaller than the total number of
unknowns, and hence the inversion ofZ′F F (which is (nT − nB) × (nT − nB), wherenB

is the number of facets inB) is not computationally very heavy. A further speed-up is
obtained by applying Woodbury’s algorithm [27], briefly recalled in the Appendix. Indeed,
using this algorithm it is possible to solve the problem just inverting a matrix of dimensions
nB. Hence, for each choice of the subsetB the dimension of the matrix to be inverted is
min(nT − nB, nB), which is at mostnmax= nT/2. Alternative applications of Woodbury’s
algorithm can also be made throughout the iteration process for the solution of the inverse
problem, when knowing the inverse of a number of submatrices ofZ′GG.

If the impedance variation is sought, a further simplification is possible. Indeed, from
(35) we have

−δZ I 2
s = VT

0δI = VT
N0δY, (42)

whereVN0=HTV0 and, as usual,δI =HδY with H= [K S], δY = [δX; δG]. It results that

ZNY0 = VN0, (43)
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whereZN = [ ZXX ZXG

ZGX ZGG
] and Y0 = [ X0

G0
] is the unperturbed solution in terms of the new

variables. Hence, from (42) we have

−δZ I 2
s = YT

0ZNδY = XT
0(ZX XδX + ZXGδG)+GT

0(ZG XδX + ZGGδG). (44)

Using (40) we finally obtain

δZ I 2
s = GT

0Z′GGδG, (45)

whereG0 is the vector of unperturbed current fluxes throughall the tentative facets inT ;
δG is the vector of the actual current fluxes through all the tentative facets inT , so that it
will be made ofδGB = −G0B andδGF which must be found solving (41). In other words,
if the impedance variation is sought, only the matrixZ′GG is needed both for inversion and
for multiplication.

V. EXAMPLES OF APPLICATION

In this section we present some examples of application of the method to both the direct
and the inverse problem. The configuration is the JSAEM Problem 6 [1]: a pancake type
probe coil (internal radius 0.6 mm, external radius 1.6 mm, height 0.8 mm, lift off 0.5 mm)
is placed above a finite plate of dimensions 140× 140× 1.25 mm, having a resistivity of
10−6 Äm.

Direct Problem

The direct problem consists of the determination of the impedance change of the pancake
coil due to the presence of a small thin crack (10 mm long), of four different shapes (see
Fig. 1), elliptical, sloping, stepwise, and rectangular, both on the same side of the plate as

FIG. 1. Different crack shapes for JSAEM Benchmark Problem 6.
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TABLE I

Mesh Details for the Meshes Used

at Both Frequencies

Nodes Elements Edges Active edges

1200 840 3202 1477

the coil (inner defect) or on the other side (outer defect). The width of the defect ranges from
0.22 to 0.25 mm for the different shapes. The excitation frequencies are 150 and 300 KHz,
and the allowed coil positions cover the range−10< x< 10 mm,y= 0 (the crack is in the
y= 0 plane, centered aroundx= 0).

First of all, we must discuss the validity of the thin crack approximation. The width of
the crack is much smaller than the other dimensions, which is the first obvious condition
that must be satisfied. In addition, this width must be much smaller than the penetration
depth. Indeed, if this were not the case, the length of the current paths originating from the
crack in order to compensate for the unperturbed current would be comparable with the
crack width. This clearly invalidates the assumption of a thin crack. The penetration depths
are 1.30 and 0.92 mm for the two frequencies; hence, the thin crack approximation can be
assumed as valid, since the width is more than 4 times smaller than the penetration depth.

The first thing to do is to give a finite element mesh of the domain of interest. Since we
are solving for the perturbation of the current pattern we only need to discretize the region
immediately around the crack itself, possibly truncating the real domain. Indeed, the only
thing that must be verified is that the perturbation current pattern is not affected by the
fictitious boundaries, regardless of the position of the excitation.

Because of the different penetration depths in the two cases, we used two different meshes:
the discretized regions are 25×16×1.25 mm and 25×11×1.25 mm in the two cases, respec-
tively, but the topological properties (summarized in Table I) are the same (see also Fig. 2).
The discretized zone has been reduced in they direction in the high frequency case because
the current perturbation is closer to the crack because of the reduced penetration depth. In
both cases we exploited the symmetry with respect to they direction, imposing the perturbed
current density to be purely normal to the planey= 0. On the other hand we did not exploit
the symmetry condition atx= 0. The mesh does not follow the known profile of the crack,
but is just made of regular hexahedral elements. Hence, the crack will be approximated as
a combination of rectangular facets.

Once the mesh has been given, the complex matrixZ is constructed. Then, the matrix
P is calculated, together with its pseudoinverseS and its nullK; finally, the matrixZ′GG is
computed once and for all. The latter is the only thing needed, since only the impedance
variation is sought. Of course, these calculations must be performed on the two different
mesh configurations corresponding to the two frequencies.

FIG. 2. The 3-D view of the mesh.
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The geometry of the excitation is taken into account only in the solution of the unperturbed
problem. Since the plate is large enough with respect to the coil and the crack to disregard
any edge effect, we use the analytical solution described in [23] for the solution of the
unperturbed problem in terms of current density. Then, this current density is numerically
integrated on the various mesh facets belonging to the crack, which gives theG0 vector
mentioned before. We explicitly notice that this is not a limitation of the method; if an
analytical solution had not been available a numerical solution could be used as well,
without any modifications of the procedure. In this case, a larger mesh should have been
used, since generally speaking a fictitious boundary that does not affect the perturbation
may well have a strong influence on the current induced by the excitation. This additional
mesh would have been used only for the solution of the unperturbed problem, playing no
further role in the solution either of the direct or the inverse problem. This means that the
possible additional computational costs can be paid once and for all.

In Figs. 3 and 4 the results are presented for the direct problem, in the case of the
rectangular inner defect at 300 KHz and of the elliptical outer defect at 150 KHz. The
crack configuration is schematized as a set of rectangular (gray) facets. This discretization
exactly fits the crack shape in the rectangular case; for the elliptical configuration a stepwise
approximation is used. The impedance variation is plotted in the two cases for each position
of the coil.

The predictions are satisfactory in both cases, not only qualitatively but also quantitatively.
Where the agreement is poor, the difference seems to be due more to the error bars of the
measurement than to the discretization error of the numerical solution. Indeed, where the
prediction does not fit the data usually the measurements are not symmetric with respect to
thex= 0 plane, whereas the crack configurations (and the predictions) are symmetric.

Inverse Problem

Now we tackle the inverse problem: given the experimental impedance variations as
described before, and some rough information about the crack location, the crack position
and shape must be identified. Of course, all the difficulties briefly recalled in the Introduction
related to the ill-posedness and non-linearity of the problem must be kept in mind when
solving it. Anyway, here we mainly focus on the features of the method of solution rather
than on the basic mathematical aspects of the question.

The first thing to do is to choose the setT of candidate mesh facets which can possibly
belong to the crack. We suppose thatT is made by all the facets belonging to they= 0
plane of the mesh, apart from the extreme ones; the total number of facets belonging toT
is nT = 100. We then calculate theZ′GG matrix for this set of facets once and for all.

The optimization procedure used in this paper in order to find the optimal subsetB of
T falls in the stream of genetic algorithms. We assume as unknown the string made of the
depth of the crack at each column of the mesh; hence, for instance, the string [1 3 0 2 4 3 5 0
2 5 4 1 0 2 2 3 4 5 1 2]represents the crack shown in Fig. 5. This means that we are assuming
to know a priori that the crack is superficial; this is not a limitation of the method, which
can easily deal with buried cracks and unconnected cracks, but only a further regularization
adopted in order to solve the inverse problem [25].

Starting from an initial random set of strings, the population is evolved using the classical
rules of genetic algorithms: crossover and mutation [28]. The various strings are classified
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FIG. 3. Direct problem results: rectangular inner defect at 300 KHz. (a) Geometrical configuration;
(b) impedance variation (◦=experimental values,×= simulated values).

on the basis of the figure of merit,

εF =
√∑

n

(
Rguess

n − Rmeas
n

)2√∑
n

(
Rmeas

n

)2
+
√∑

n

(
Xguess

n − Xmeas
n

)2√∑
n

(
Xmeas

n

)2
,

whereRmeas
n + j Xmeas

n (resp.Rguess
n + j Xguess
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the numerical impedance variation calculated for the current guess) at thenth position of
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FIG. 4. Direct problem results: elliptical outer defect at 150 KHz. (a) Geometrical configuration; (b) impedance
variation (◦=experimental values,×= simulated values).

the exciting coil. In Fig. 6 the results of the inversion procedure are presented in the case
of the inner elliptical crack at 150 KHz.

In this figure, light gray stands for a facet which is in the crack both in reality and in the
prediction, black indicates a facet which is not in the crack but is in the estimate, and dark
gray stands for a facet which is in the real crack but not in the estimate. The results are
clearly satisfactory: the bulk of the crack shape is correctly identified, with only a few bits
wrong. In particular, the form of the crack illustrated in Fig. 6 is unsymmetric because the
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FIG. 5. Crack corresponding to the string [1 3 0 2 4 3 5 0 2 5 4 1 0 2 2 3 4 5 1 2].

measurements are not symmetric with respect to thex= 0 plane. In Table II some details
are reported about the solution and the identification procedure, together with the value of
the following shape error indicator,

εR = area(Ct ∪ Cn − Ct ∩ Cn)

area(Ct )

whereCt is the real crack andCn is the identified crack.
Now we investigate the robustness of the method with respect to the problems related

to ill-posedness, i.e., the effectiveness of our regularization strategy. In order to do this,
we perform the inversion algorithm on data polluted by adding an artificial noise to the
experimental data, which are already affected by experimental errors. If the regularization
scheme is working properly the solution attained should be stable, i.e., to small variations
of data there correspond small variations in the solution. In fact, this is the case, as one can
see from the results shown in Fig. 7, where the errorsεF andεR are plotted as functions of
the standard deviation of the artificial noise.

Some comments are called for about the computational costs. The optimization algorithm
used requires several solutions of the direct problem, each corresponding to a different

TABLE II

Information about the Inversion Algorithm

No. of generations Time [s] εR εF

32 132 14.06% 18.65%

Note. The procedure run on a Pentium-based PC and stopped
after 10 generations without any improvement of the error.
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FIG. 6. Identification results for the inner elliptical crack at 150 KHz. (a) Geometrical configuration;
(b) impedance variation (◦=experimental values,×= simulated values).

individual in the population. Since theZ′GG matrix is computed once and for all, the only
thing that must be done for a direct computation is only the inversion of a suitable submatrix.
As mentioned before, at each step of the minimization procedure the dimension of the
matrix to be inverted is at mostnmax= nT/2. In the present case, it results innmax= 50;
consequently, each subsequent direct calculation is extremely fast, which allows a very
efficient implementation of genetic-like optimization strategies.
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FIG. 7. Error valuesεF (◦) andεR (×) as a function of the standard deviation of the artificial noise (expressed
in % of the maximum value of the measure).

VI. COMMENTS AND CONCLUSIONS

The numerical approach described here introduces a new efficient way to deal with the
reconstruction of thin cracks. It is worth noticing that the technique introduced in this paper
could be used also when dealing with volume cracks [24].

The method is based on an integral formulation which takes advantage of the edge element
representation of the current density unknowns.

Its main characteristics can be better understood in comparison with other numerical ap-
proaches. Indeed, the present method combines the advantages of the integral formulations
(the need of discretizing only the conducting region around the defect) with the differential
finite element formulations where the knowledge of the analytic expression of the Green’s
function is not required. Moreover, the particular treatment of the unknowns in conjunction
with the edge elements and the tree–cotree gauge condition gives automatic account of the
solenoidality constraint, hence reducing to two the number of scalar unknowns related to
the three components of the current density. In this way, the method allows us to take into
account irregular domains containing steps, edges, and corners without any particular ad
hoc artifices. In addition, when dealing with canonical geometries, the knowledge of the
analytic solution for the unperturbed case can be effectively taken into account.

The advantages of this approach are related to the solutions of both the direct and the
inverse problems. In the first case, it has been shown how fast and accurately a solution
can be obtained for a given set of facets describing the defect. In the inverse problem,
one key point is related to the binary nature of the unknowns which gives the possibility
of conveniently exploiting the features of the genetic algorithm. In this way, the global
minimum can be sought, hence reducing the problems related to the possible presence of
the local minima.
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The present method has been successfully applied to a number of benchmark problems.
The predictions are in good agreement with the experimental data, and both the direct and
the inverse computations are very fast. Hence, the method has proved to be very effective
in tackling ECT problems.

APPENDIX: WOODBURY’S ALGORITHM

As stated in Section IV, the problem is to solve (41), which demands the inversion of
the square matrixZ′F F , of dimensionsnT − nB. We will show in this appendix that we
can reformulate the problem so that the inversion of a square matrix of dimensionsnB is
required. Hence, once the choice of the tentative subsetB of facets has been made, the most
convenient calculation can be performed.

Equation (41) can be rewritten as

Z′F FδGF + Z′FBδGB = 0 (A1)

Z′BFδGF + Z′B BδGB = qB (A2)

or, in compact notation

Z′GGδG = q, (A3)

where the vectorq= [0; qB] must be chosen so thatδGB=−G0B. From (A3) we have

δG = (Z′GG)
−1q = Z′′GGq, (A4)

and hence, taking the definition ofq into account,

δGB = Z′′B BqB (A5)

so that we must choose

qB = −(Z′′B B)
−1G0B. (A6)

Hence, first of all we obtain the inverseZ′′GG = (Z′GG)
−1 once, and then we invert only

the submatrixZ′′B B of dimensionsnB to obtainqB and then, from (A4),δG.
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