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In this paper an innovative technique is described to solve the electromagnetic
problem in the presence of a cracked conductor. Both the direct problem (given
the crack, compute the scattered field) and the inverse problem (given the external
measurements, obtain the crack position and shape) are dealt with. The features of an
integral formulation in terms of a two-component electric vector potential expanded
over edge elements are fully exploited. The resulting method proves to be extremely
efficient, also thanks to the binary nature of the unknown. In this paper we restrict
our attention to a class of problems, namely the eddy current testing for thin cracks
in non-magnetic metallic plates, but the method can be extended to more general
CaSes. (© 1999 Academic Press
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I. INTRODUCTION

Eddy current testing (ECT) is a non-destructive evaluation (NDE) technique thatis g
ing increasing interest as a key technology in the detection of small cracks in conduc
specimen. Its main applications regard the analysis and testing of metallic compor
employed in transportation, nuclear, and other industrial plants [1]. The method is be
on the detection of the magnetic field due to the eddy currents induced on the speci
The presence of a defect modifies the eddy current pattern and hence gives rise to ¢
perturbation closely related to the position and shape of the defects. Thanks to a s
industrial concern, this kind of problem has been of considerable interest in the last y
also from the computational viewpoint. This attention is well understood if one takes i
account that fast and precise numerical methods are needed to post-process the me
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measurements in order to attain an improved evaluation of the geometric characteristi
the flaw.

From the computational point of view, a direct and an inverse problem have to be sol
The direct problem consists of the evaluation of the field perturbation at the measurel
probe locations, for a given exciting field and geometry of the flaw (or flaws). In the inve
problem, one has to find the position and the shape of the flaw(s), assuming the measure
and the forcing field as known quantities.

The inverse problem is non-linear and ill-posed. It is well known that a problem is we
posed in the sense of Hadamard if a solution exists, is unique, and depends continu
on the data. These aspects for the inverse electromagnetic problems have been s
by several authors. Here we just mention Colton and Kress [2], Colton and Paivar
[3], Isakov [4], and Yamamoto [5]. Stability is usually achieved by means of suital
procedures like Tikhonov's regularization. Namely, a priori information about the soluti
is added and the problem is reformulated in order to restrict the set in which the solu
is to be found. In the NDE, the problem is usually reformulated as the minimization
an error functional expressing the distance between computed and measured field v
with suitable assumptions about the solution (e.g., regularity, positiveness, topology o
support, etc.).

Solution of the inverse problem is the key objective in NDE. The success of any inver:
procedure requires fast and accurate solutions of the forward problem. Basically, t
are three main approaches to the numerical solution of this problem. The straightfon
application of standard finite element techniques based either on differential or inte
formulations [6], although easy to apply, often suffers from several drawbacks. In f
the defect geometry and related field perturbations are very localized and impose s
constraints on the discretization of the specimen and, in some cases, of the region occ
by exciting sources and field sensors. A second approach is based on an integral formu
[7—10] specifically derived to deal with this kind of problem and numerically approximat
by the method of moments. In this case, the unknowns are the equivalent sources cons
of volume current dipole distributions, usually approximated by piecewise constant ve
pulse functions. Inthe integral equation, the dyadic Green’s kernel already takes into acc
the correct continuity condition at the air/conductor interface, so that the discretized dor
is limited to the flaw region. On the other hand, the need for an explicit knowledge of
Green’s functions restricts the shape of the conductor to simple canonical geometries,
as a layered half space, an infinite cylinder, or a sphere [11,12].

Another formulation has been recently proposed and successfully applied [13—1¢
keep the advantages of the integral approach without suffering from the restriction
resented by the required knowledge of the analytic expression of Green’s functions.
method is based on a differential formulation where the Green’s function is numeric
calculated using the solution of the field problem in the unflawed conducting domain.

The inverse problem related to the reconstruction of the geometric and physical chare
istics of the defect requires, as already said, the minimization of an error functional rel:
to the scattered field in the region outside the specimen. Strong difficulties arise sinc
possible presence of local minima requires global optimization procedures, such as s
lating annealing or genetic algorithms that work efficiently only with a limited number
unknowns.

The problem of understanding the causes of the occurrence of local minima has
studied in [16], with reference to a quadratic expansion of the operator relating the scat
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field to the conductivity [17,18]. In the frame of this approach, a generalization of the w
known linear Born approximation, it has been shown that the presence of local mininr
related to the ratio between the essential dimension of the subspace of data and the ni
of unknowns.

Deterministic methods used to find the solution of the inverse problem are usually be
on gradient algorithms. In these cases, the gradient, or sensitivity, of the error functi
with respect to the unknowns is often computed using the adjoint equation technique |

In summary, the main difficulties of the approaches mentioned above are the treatme
thin cracks, the need for a numerically consistent field representation (instead of pulse b
time consuming forward solutions, unavailability of Green’s functions, high discretizati
costs in the differential approaches, and the presence of a large number of unknowns
inverse problem.

In this paper, to overcome these difficulties, we propose a numerical method for
reconstruction of thin cracks based on an efficient integral formulation in terms of a t
component current density vector potential [20] which takes advantage of the edge ele
representation of the field unknowns. Using superposition, the forward problem is refor
lated as the determination of the modified eddy current pattern due to the presence c
defect. In particular, since the total current density has to be zero in the crack region
variation of the current density is imposed to be just the opposite of the unperturbed or
the crack region, giving the known source term of an integral equation to be solved «
around the crack. This fast algorithm to solve the forward problem is the key step of
inversion procedure. When generating the solution corresponding to a candidate flaw
a very small part of the whole matrix describing the model must be inverted.

The paper is organized as follows. Section Il summarizes the main features of the int¢
formulation along with its discrete approximation. Sections Il and IV discuss the propo
method, with reference to the direct and inverse problem, respectively. In Section V,
method is tested against some experimental results. In Section VI some final comment
conclusions are presented.

Il. FORMULATION

The mathematical model consists of the set of the eddy current equations in linear
magnetic media,

VxE=-0B/3t inV, (1)
VxH=J inV, )
B=poH inV ©)
J=0E+Js inV, @)

wherekE is the electric fieldH is the magnetic fieldB is the magnetic flux density,is the
current densityJs is the impressed current densityjs the electrical conductivity, ando
is the vacuum magnetic permeability.

Here, V; is the conducting domain, i.e., the region of space wilsege0, which will
be supposed simply connected in the following to fix the ideas. Out4idine following
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equations hold:

V.-B=0 outsideV, (5)
V xH=1J outsideV, (6)
B = uoH outsideV;. @)

Of course, a suitable set of initial, boundary, and interface conditions must be impo:
The formulation recalled here is presented in detail in [20, 21]. First of all, the followi
expression is used for the electric field, which automatically enforces Faraday’s law,

E=—0A/dt — Vg, ®)

whereg is the electric scalar potential aidis the magnetic vector potential defined by
Coulomb gauge,

B=VxA, V-A=0 9)
which can be linked to the unknown current density by

po [ IX, ) o,
AX 1) = — dV' + Ag(x, t 10
*1) = /V x x4V HAXD, (10)

whereA; is the vector potential due to the known soudge
The second step is imposing Ohm’s law using the weighted residual approach,

M —E)-WdV=0, JeSVWeS (11)
Ve

wheren =1/0 is the electric resistivityS={J € L2 4, (V.), V-J=0in V., J-n=0 on
aVe}, andL? g (Ve) is the space of vector fields that are square integrab\g together
with their divergence. Note that the conditidne S, which implies the continuity of the
normal component aJ, comes from (2) and the continuity of the tangential componer
of H. On the contrary, the condition that also the weighting functdr Sis a numerical
choice, which allows us to remove the contribution of the electric scalar potential in (2
that becomes

d (1o JxX,
W - — V' +A V YW . (12
/. (v 8t(47r/\,c|x—x’|d FAD) JdV. JeswWes ()

As a consequence, the electric scalar potential disappears from the formulation, ar
potential jump must be considered &Y.

The next step is the numerical solution of (12). A discretization of the conducting donr
is given in terms of a finite element mesh. The conditlba S is imposed expanding
J= )" IkJk on a set of basis functiord which in turn belong tc. This is guaranteed by
introducing the electric vector potenti@l such thatv x T = J, and expanding it on an
edge elementbasiéj, asT = _; I;N; [21]. Doing so, the coefficierl; is the line integral
of T along the edgé. The uniqueness df is guaranteed by means of the two-componel
gauge [22, 21],

T.w=0, (13)



740 ALBANESE, RUBINACCI, AND VILLONE

wherew is an arbitrary vector field with no closed field lines. The imposition of this gaut
is very conveniently implemented using a tree—cotree decomposition of the Grajaide
of the nodeN and the edgek of the mesh [20, 21]. The vector field is chosen such
that its field lines are along the branches of a ffeevhich does not close any loop by
definition. Hence, the coefficients linked to all the branches of the tree vanish, and onl
the coefficients related to the edges of the coees G — T are retained. Any of these
coefficients, sayy, is then the current flux linked by the loop closed by the eklgéthe
cotree with the branches of the tree.

It is also straightforward to enforce the additional condition required to the functic
of S:

J-n=0 ondV,. (14)

Let Gy, be the subgraph @& including only boundary nodedf) and edgesH,,). Using a
sequential algorithm, it is always possible to selesb thatT N Ey is a tree forGy, [20].
With such a choice, for a simply connected region, all the cotree edges on the boun
(CNEy) close loops completely laying ai/, and therefore the corresponding coefficient
must vanish.

As a consequence, the basis functidps= V x N of the current density automatically
belong toS, and so does. The degrees of freedoin of the expansion

J=Z|kVXNk (15)
k

have the following property. Given a mesh fadetetk,, .. ., k. be the indices of the active
(i.e., non-vanishing) edges which are part of the contdupf f. Then, the current flux
through f is simply

Gi=tlgt- £y, (16)

where the signs depend on the relative orientation of the edgefand
Adopting the Galerkin method, i.e., choosing ihes equal to the basis functiorlg’s,
Eg. (12) can be written as

dl

La+R| =V, a7)
wherel = {I},V = {W}, and
Ly =&/ / VX NiCO) -V XN 1y gy (18)
4 v, v, X — X'|
Rij :/ V x Ni(xX)-nV x Nj(x)dV (29)
Ve
V, = 3 V x Nj(X) - As(x)d V. (20)

ot Jy,

Of course, if a sinusoidal steady state must be studied (which is common practice in ¢
tromagnetic non-destructive evaluation), the impedahee(R + jwlL) can be introduced,

R+ job)l =V, (21)

where the elements éfandV are phasors.
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Ill. SOLUTION OF THE DIRECT PROBLEM

Simplifying Assumptions

As mentioned above, we restrict our attention to a class of problems, namely the ¢
current testing for thin cracks in non-magnetic metallic plates.

The first assumption is that the thickness of the defect is small when compared not
to its depth and width but also to the skin depth at the exciting frequency. This allc
us to schematize the defect as a zero-thickness crack, i.e., as a surface across whi
current flow is forbidden. Anyway, the present method can be easily extended to the
of volumetric flaws.

The absence of non-linear media allows us not only to use the integral formula
described in Section Il but also to exploit superposition and reciprocity to improve
accuracy of the numerical results for a given computation effort.

Solution of the Flawless Problem

First, we calculate the solution of the electromagnetic problem without the flaw. Al
lytical solutions are available for particular forms of the conducting structures, e.g., fo
indefinite plate [23]. These analytical solutions provide acceptable approximationsinr
practical cases.

Otherwise, if the edge effects are not negligible, or the shape of the specimen is
canonical, the unperturbed field can be determined numerically by means of the techr
illustrated in Section 1. Expanding the current densityas > lokJok, EQ. (21) yields

Zolg = Vo, (22)

whereZy, = Ro+ jwl g is the impedance matrix, aMy is the applied voltage. The subscript
0 indicates that the shape functions, the matrices, and the solution coefficients are calcl
in the absence of the crack.

Calculation of the Modified Eddy Current Pattern

The second step for the solution of the forward problem is the determination of
modified eddy current pattern due to the presence of the defect. A thin crack can be desc
as a surfac&y, discretized via a set of finite element faces characterized by the constr

J-n=0, (23)

wheren is the normal unit vector on the face.

To solve a single problem in the presence of a well defined flaw, it is possible to t
V. U 4 with the technique described in Section Il to deal with condition (14). Howevi
it is often required to solve the direct problem several times for the same specimen
different defects, e.g., when solving the inverse problem. In this case the above technic
not efficient at all, because the chang&gimplies redefinition of the tree and reassemblin
of the matrices. For this reason we adopt the following method.

ThefluxofJ =V x T across any elementary face is given by the circulatioh afong the
edges identifying the face. As the values of the unknolissrepresent the line integrals
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of T along the active edges, the net current crossing an elementary face is given b
algebraic sum of the unknowns associated with the active edges of the face [24],

G =PI, (24)

whereG is the set of net currents crossing thdacets of:y, andP is a (m, n) sub-matrix
of the edge-facet incidence matrix with coefficientst@, or—1.

In principle, the desired result might be obtained by calculating the eddy current der
induced by the exciting coil in the presence of the crack, obtaining the corresponding sic
and subtracting the signal obtained without the flaw. However, to avoid cancellation ert
we exploit superposition, assuming directly the variatidrof the eddy current density as
unknown,

J=Jo+4J. (25)
We also expandJ in terms of the solenoidal shape functions used for the flawless ple

8J = Z SlJo. (26)

k=1,n

However, to satisfy Eq. (23), the variation of the normal component of the current den
must be just the opposite of the unperturbed one across the crack. We therefore impo:
constraint

P§l = —Go, (27)
where
Go = Plg (28)

is the set of unperturbed currents crossing the crack facets.
In this case, the unknown can be expressed as

51 = K8X + 8l p, (29)

whereK is a (1, n — m) matrix given by an orthonormal basis for the null spac® ofl ,
is an arbitrary solution of Eq. (27), ai& is an auxiliary variable.
A possible choice foél , is provided by pseudo-inversion of system (27),

8lp = SéG, (30)
wheresG = —Gg andS = P*. In this way Eq. (29) becomes
3l = KX 4 S8G. (32)

This allows us to express in terms of then — m unknown vectos X and them known
vectorsG = —Gg. Hence, the problem becomes findixy However, we cannotuse Eq. (12)
with the n Jgi’s as weighting functions, unless we explicitly introduce the jump of th
scalar potential across the crack, since they do not fulfill constraint (23). A more effici
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alternative is to consider a set of weighting functions satisfying Eq. (23) across the cr
These are readily obtained observing tR&sX =0 for any§X. As a consequence, a sef
of independent weighting functions is given by the linear combinationkg with the
coefficients of the columns ¢, i.e., then—mrows ofK . The corresponding linear system
for the calculation o8J is therefore

KTZKsX = —KTZS5G. (32)

The eddy current perturbation is finaly = » ©,_, ,6lkJok, wheresX is calculated from
Eq. (32) andsl is obtained from (31).

Calculation of the Perturbed Signals

From the eddy current perturbatiéd = > 51,V x Nx we may compute the reaction field.
In particular, the impedance change of the exciting coil is given by any of the expressi

§Z = jw/ 3A - JsdV /12 (33)
Ds

8Z = jw/ As-83dV/1Z (34)
Dc

82 = —V{sl /1, (35)

wheresA is the magnetic vector potential duestd

Equation (33) is the standard expression, whereas Egs. (34) and (35), which gene
yield more accurate results, are obtained using reciprocity. Equation (35) can be used
unperturbed problem has been solved numerically.

IV. SOLUTION OF THE INVERSE PROBLEM

When solving the direct problem the position of the crack is knanpriori. Hence,
the P matrix is constructed only on the mesh facets which belong to the crack itself,
only the equations regardirfgX must be written, sincéG is equal to the opposite of the
unperturbed current flux vecterG.

Conversely, the inverse problem consists of finding the unknown position and shag
the crack from the knowledge of some external measurements. From our point of view
must find which is the set of mesh facets belonging to the crack. As a consequence
each facet of the mesh we must understand whether it is part of the crack or not. It is w
noticing that the problem involves a binary decision: once we have ascertained that a
indeed belongs to the crack the value of the current flowing through it is known, sinc
must be the opposite of the unperturbed current. On the contrary, if the facet is not pe
the flaw, the value of current flow is unknown. Of course, such a “bitmap” description
the crack is expected to get more and more accurate as the discretization gets finer.

Moreover, we will assume that it is possible, from the external electromagnetic ir
surements, to gain rough information about the zone of the specimen where the cra
presumably located. Once this has been attained, one may perform a higher numt
measurements only close to this region. In this way, the inverse problem that we ts
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is
find the position and shape of the crack starting from some electromagnetic extern

measurements and some a priori rough information about the region where the cra
is presumably located.

This method is a common practice in standard eddy current non-destructive evalu:
[25, 26].

Finally, some considerations are called for about the fact that the problem is ill-po:
As mentioned in the Introduction, the solution of the inverse problem needs regulariza
by restricting the set in which we look for the solution. In our approach the regularizat
acts at the following levels.

(@) The unknown is binary, i.e., for each facet of the mesh we must decide wheth
belongs to the crack or not. This feature of the method eliminates all the possible solut
corresponding to intermediate situations in which the facet can be partially crosset
currents.

(b) We have identified the zone where the crack is located. This means that we
disregarding all the spurious solutions corresponding to non-physical cracks located
region where we know a priori that no defects are present.

(c) Further stepsinthis direction of reducing the space of the unknown may be don
each single problem. For instance it may be possible to assume that the defect is supe
and simply connected. In Section V we will give some further hints, when presenting
results of the inverse problem.

From the above considerations the following strategy comes out for the solution of
inverse problem. First of all, we identify the sEtof all possible candidate crack facets,
i.e., the set of all mesh facets which could possibly belong to the crack. Then, we calct
Go and theP matrix on this set and we perform the variable change just as in the cas
the direct problem. However, now not all th& are known, since only some of them will
belong to the crack. Hence, the inverse problem can be reformulated as

find the subseB C T such that the solution obtained imposing
8Gg = —Ggg gives the best fit to the experimental data

wheres Gg(Gog) are the current fluxes (unperturbed current fluxes) through the mesh fa
belonging toB.

Because of the particular nature of this problem, a binary optimization technique seer
be particularly suitable. Indeed, what must be found is the bit string codifying which fac
of T belong toB. Examples of such methods are the genetic algorithms. The key to th
technigues is making successive tentative choices for the sBbsefining at each step.

Hence, a fast method for solving the direct problem corresponding to each tentz
choice must be available. Now, we discuss the method for solving the problem once
subsetB has been chosen on the basis of the optimization strategy.

Let F =T — B be the set of facets belonging to the tentativeTséut not to the crack
B. The corresponding current fluxé&g are not knowra priori, and hence the relative
equations must be imposed, together with the equations correspondiXg ¥hich are
unknown, as in the direct problem.

In other words, first of all we define

Zyx =K'ZK;  Zxe =24y =K'ZS; Zge=S'ZS. (36)
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Then, we say that by substituting the subscfptvith B or F we obtain the submatrix
resulting from considering only the rows or the columns relative to the facets belongin
B andF, respectively: for instanc&y is the submatrix oZ x g obtained by selecting the
columns corresponding to facets belongind-to

Finally, we can write

Zxx6X +ZxgdGg + ZxgdGg =0 (37)
Zex8X + ZerSGr + ZrpdGg = 0, (38)

where
8Gg = —Gog. (39)

System (37)—(38) must be solved in order to obtain the unknéXrands G for a given
subsetB.
Obtainings X from (37)

8X = —(Zxx) 'Zxc8G = —(Zxx) '(ZxrdGE + Zx83Gs) (40)
and substituting in (38), taking account of (39), we obtain
Z'rr8Gg = ZpgGog, (41)

whereZy =Zex(Zxx) Zxr — Zrr andZeg =Zex(Zxx) " *Zxs — Zrs.

Hence, we can fin@Zxx) 1Zxc andZ'cc = Zax(Zxx)~*Zxe — Zeg once and for all;
Z ¢ andZ g are suitable submatrices B ;. Then, only the matri€- must be inverted
at each step in order to finkGg, and only a matrix-by-vector product is needed §&.
OncesX and$G are known, it is possible to get the original unknowhgrom (31) and in
turn any other possible output variable (field measurements, impedance variation, etc

If we know roughly which is the zone of the specimen where the crack is located,
the numbemy of facets belonging td will be much smaller than the total number of
unknowns, and hence the inversionZif- (which is (nt — ng) x (nt — ng), whereng
is the number of facets iB) is not computationally very heavy. A further speed-up i
obtained by applying Woodbury’s algorithm [27], briefly recalled in the Appendix. Indee
using this algorithm it is possible to solve the problem just inverting a matrix of dimensi
ng. Hence, for each choice of the sub&ethe dimension of the matrix to be inverted is
min(nt — ng, ng), which is at moshmax= N7 /2. Alternative applications of Woodbury’s
algorithm can also be made throughout the iteration process for the solution of the inv
problem, when knowing the inverse of a number of submatric&s;gf

If the impedance variation is sought, a further simplification is possible. Indeed, fr
(35) we have

—8Z12 = V{8l = V{8Y, (42)
whereV yo=H"Vg and, as usuabl =HsY with H=[K S], §Y = [6X; §G]. It results that

ZnYo = Vo, (43)
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whereZy = [ZXX ZXG] andYgo = [XO] is the unperturbed solution in terms of the new
Zex  Zso Go

variables. Hence, from (42) we have
—8Z12 = Y{ZNSY = XJ(Zxx8X 4 Zxc8G) + Gy (ZaxdX 4+ ZeedG).  (44)
Using (40) we finally obtain
8Z12 = G} Z5 558G, (45)

whereGy is the vector of unperturbed current fluxes throadjithe tentative facets iff;
3G is the vector of the actual current fluxes through all the tentative facatsso that it
will be made ofsGg = —Gog andéGg which must be found solving (41). In other words,
if the impedance variation is sought, only the ma#ix; is needed both for inversion and
for multiplication.

V. EXAMPLES OF APPLICATION

In this section we present some examples of application of the method to both the d
and the inverse problem. The configuration is the JSAEM Problem 6 [1]: a pancake |
probe coil (internal radius 0.6 mm, external radius 1.6 mm, height 0.8 mm, lift off 0.5 m
is placed above a finite plate of dimensions 24040 x 1.25 mm, having a resistivity of
1078 Qm.

Direct Problem

The direct problem consists of the determination of the impedance change of the par
coil due to the presence of a small thin crack (10 mm long), of four different shapes |
Fig. 1), elliptical, sloping, stepwise, and rectangular, both on the same side of the pla

X [mm]

FIG. 1. Different crack shapes for ISAEM Benchmark Problem 6.
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TABLE |
Mesh Details for the Meshes Used
at Both Frequencies

Nodes Elements Edges Active edges

1200 840 3202 1477

the coil (inner defect) or on the other side (outer defect). The width of the defect ranges
0.22 to 0.25 mm for the different shapes. The excitation frequencies are 150 and 300 |
and the allowed coil positions cover the range0 < X < 10 mm,y =0 (the crack is in the
y =0 plane, centered arounxd= 0).

First of all, we must discuss the validity of the thin crack approximation. The width
the crack is much smaller than the other dimensions, which is the first obvious condi
that must be satisfied. In addition, this width must be much smaller than the penetr:
depth. Indeed, if this were not the case, the length of the current paths originating fron
crack in order to compensate for the unperturbed current would be comparable witt
crack width. This clearly invalidates the assumption of a thin crack. The penetration de
are 1.30 and 0.92 mm for the two frequencies; hence, the thin crack approximation ce
assumed as valid, since the width is more than 4 times smaller than the penetration d

The first thing to do is to give a finite element mesh of the domain of interest. Since
are solving for the perturbation of the current pattern we only need to discretize the re
immediately around the crack itself, possibly truncating the real domain. Indeed, the
thing that must be verified is that the perturbation current pattern is not affected by
fictitious boundaries, regardless of the position of the excitation.

Because of the different penetration depths in the two cases, we used two different me
the discretized regions are 286x 1.25 mm and 2 11x 1.25 mm in the two cases, respec-
tively, but the topological properties (summarized in Table I) are the same (see also Fi
The discretized zone has been reduced inytlizection in the high frequency case becaus
the current perturbation is closer to the crack because of the reduced penetration dey
both cases we exploited the symmetry with respect tg thieection, imposing the perturbed
current density to be purely normal to the plane 0. On the other hand we did not exploit
the symmetry condition at= 0. The mesh does not follow the known profile of the cracl
but is just made of regular hexahedral elements. Hence, the crack will be approximate
a combination of rectangular facets.

Once the mesh has been given, the complex matiix constructed. Then, the matrix
P is calculated, together with its pseudoinve®sand its nullK; finally, the matrixZ is
computed once and for all. The latter is the only thing needed, since only the imped:
variation is sought. Of course, these calculations must be performed on the two diffe
mesh configurations corresponding to the two frequencies.

FIG. 2. The 3-D view of the mesh.
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The geometry of the excitation is taken into account only in the solution of the unpertur
problem. Since the plate is large enough with respect to the coil and the crack to disre
any edge effect, we use the analytical solution described in [23] for the solution of
unperturbed problem in terms of current density. Then, this current density is numeric
integrated on the various mesh facets belonging to the crack, which giv&, thector
mentioned before. We explicitly notice that this is not a limitation of the method,; if
analytical solution had not been available a numerical solution could be used as \
without any modifications of the procedure. In this case, a larger mesh should have
used, since generally speaking a fictitious boundary that does not affect the perturb.
may well have a strong influence on the current induced by the excitation. This additic
mesh would have been used only for the solution of the unperturbed problem, playin
further role in the solution either of the direct or the inverse problem. This means that
possible additional computational costs can be paid once and for all.

In Figs. 3 and 4 the results are presented for the direct problem, in the case of
rectangular inner defect at 300 KHz and of the elliptical outer defect at 150 KHz. T
crack configuration is schematized as a set of rectangular (gray) facets. This discretiz
exactly fits the crack shape in the rectangular case; for the elliptical configuration a step
approximation is used. The impedance variation is plotted in the two cases for each pos
of the coil.

The predictions are satisfactory in both cases, not only qualitatively but also quantitati
Where the agreement is poor, the difference seems to be due more to the error bars
measurement than to the discretization error of the numerical solution. Indeed, whert
prediction does not fit the data usually the measurements are not symmetric with respe
thex =0 plane, whereas the crack configurations (and the predictions) are symmetric

Inverse Problem

Now we tackle the inverse problem: given the experimental impedance variation:
described before, and some rough information about the crack location, the crack pos
and shape must be identified. Of course, all the difficulties briefly recalled in the Introduc
related to the ill-posedness and non-linearity of the problem must be kept in mind w
solving it. Anyway, here we mainly focus on the features of the method of solution rat
than on the basic mathematical aspects of the question.

The first thing to do is to choose the Sebf candidate mesh facets which can possibl
belong to the crack. We suppose tfais made by all the facets belonging to tiie-0
plane of the mesh, apart from the extreme ones; the total number of facets belonging
is nt = 100. We then calculate th&; 5 matrix for this set of facets once and for all.

The optimization procedure used in this paper in order to find the optimal sBbskt
T falls in the stream of genetic algorithms. We assume as unknown the string made o
depth of the crack at each column of the mesh; hence, for instance, the $t8I0¢[4 350
25410223451 ZAepresents the crack shown in Fig. 5. This means that we are assun
to know a priori that the crack is superficial; this is not a limitation of the method, whi
can easily deal with buried cracks and unconnected cracks, but only a further regulariz.
adopted in order to solve the inverse problem [25].

Starting from an initial random set of strings, the population is evolved using the class
rules of genetic algorithms: crossover and mutation [28]. The various strings are class
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FIG. 3. Direct problem results: rectangular inner defect at 300 KHz. (a) Geometrical configurati
(b) impedance variatioro (= experimental valuesg = simulated values).

on the basis of the figure of merit,

_ VTR Ry (e ey’
£ ’
(R’ Sn(Xpe=y?

where R854 j X3S (resp. R3Uess4- j X 3¢5y is the measured impedance variation (resj
the numerical impedance variation calculated for the current guess) athtip®sition of

&




750 ALBANESE, RUBINACCI, AND VILLONE

a,
0.5r
0
€
E
05
-1
-1.5¢
-10 -5 0 5 10
X [mm]
b x107°
5 o ; o
,g o @ Q ® 6 x 6 X S o )
) X
s o ©
X
§ sf o 8 :
8 X o o ®
@
8-101 M -
_15 . . .
-0.01 -0.005 0 0.005 0.01
' )
T0.04f x5 %%y .
< x O 6
o )
L] é 9
20.021 o) 4
[ % %
° [e]
3 8 e
Iia oT ® & ® ® 4
-0.01 -0.005 0.005 0.01

0
Coil position [m]

FIG.4. Directproblemresults: elliptical outer defectat 150 KHz. (a) Geometrical configuration; (b) impedal
variation @ = experimental valuesy = simulated values).

the exciting coil. In Fig. 6 the results of the inversion procedure are presented in the |
of the inner elliptical crack at 150 KHz.

In this figure, light gray stands for a facet which is in the crack both in reality and in't
prediction, black indicates a facet which is not in the crack but is in the estimate, and ¢
gray stands for a facet which is in the real crack but not in the estimate. The results
clearly satisfactory: the bulk of the crack shape is correctly identified, with only a few t
wrong. In particular, the form of the crack illustrated in Fig. 6 is unsymmetric because
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FIG.5. Crack correspondingtothe string8024350254102234512).

measurements are not symmetric with respect tothé plane. In Table Il some details
are reported about the solution and the identification procedure, together with the valt
the following shape error indicator,

. aregC,uUC,—-C;NnCy)
- aredC;)

€R

whereC; is the real crack an@, is the identified crack.

Now we investigate the robustness of the method with respect to the problems re
to ill-posedness, i.e., the effectiveness of our regularization strategy. In order to do
we perform the inversion algorithm on data polluted by adding an artificial noise to
experimental data, which are already affected by experimental errors. If the regularizz
scheme is working properly the solution attained should be stable, i.e., to small variat
of data there correspond small variations in the solution. In fact, this is the case, as on
see from the results shown in Fig. 7, where the ersprandeg are plotted as functions of
the standard deviation of the artificial noise.

Some comments are called for about the computational costs. The optimization algor
used requires several solutions of the direct problem, each corresponding to a diff

TABLE Il
Information about the Inversion Algorithm

No. of generations Time [s] £R eF

32 132 14.06% 18.65%

Note The procedure run on a Pentium-based PC and stopped
after 10 generations without any improvement of the error.
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FIG. 6. Identification results for the inner elliptical crack at 150 KHz. (a) Geometrical configuratio
(b) impedance variatioro(= experimental valuesg = simulated values).

individual in the population. Since th&, ; matrix is computed once and for all, the only
thing that must be done for a direct computation is only the inversion of a suitable subma
As mentioned before, at each step of the minimization procedure the dimension of
matrix to be inverted is at mosinox= N7 /2. In the present case, it resultsnipax= 50;
consequently, each subsequent direct calculation is extremely fast, which allows a
efficient implementation of genetic-like optimization strategies.
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VI. COMMENTS AND CONCLUSIONS

The numerical approach described here introduces a new efficient way to deal witt
reconstruction of thin cracks. It is worth noticing that the technique introduced in this pa
could be used also when dealing with volume cracks [24].

The method is based on an integral formulation which takes advantage of the edge ele
representation of the current density unknowns.

Its main characteristics can be better understood in comparison with other numerica
proaches. Indeed, the present method combines the advantages of the integral formul
(the need of discretizing only the conducting region around the defect) with the differer
finite element formulations where the knowledge of the analytic expression of the Gre
function is not required. Moreover, the particular treatment of the unknowns in conjunct
with the edge elements and the tree—cotree gauge condition gives automatic account
solenoidality constraint, hence reducing to two the number of scalar unknowns relate
the three components of the current density. In this way, the method allows us to take
account irregular domains containing steps, edges, and corners without any particul
hoc artifices. In addition, when dealing with canonical geometries, the knowledge of
analytic solution for the unperturbed case can be effectively taken into account.

The advantages of this approach are related to the solutions of both the direct an
inverse problems. In the first case, it has been shown how fast and accurately a sol
can be obtained for a given set of facets describing the defect. In the inverse prob
one key point is related to the binary nature of the unknowns which gives the possib
of conveniently exploiting the features of the genetic algorithm. In this way, the glol
minimum can be sought, hence reducing the problems related to the possible preser
the local minima.
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The present method has been successfully applied to a number of benchmark prob
The predictions are in good agreement with the experimental data, and both the direc
the inverse computations are very fast. Hence, the method has proved to be very effe
in tackling ECT problems.

APPENDIX: WOODBURY'S ALGORITHM

As stated in Section 1V, the problem is to solve (41), which demands the inversior
the square matriZ, of dimensionst — ng. We will show in this appendix that we
can reformulate the problem so that the inversion of a square matrix of dimemgjass
required. Hence, once the choice of the tentative subséfacets has been made, the mos
convenient calculation can be performed.

Equation (41) can be rewritten as

Z/FF(SGF + Z/FBSGB =0 (A1)
Z,BF(SGF ~|—Z/|335GB =d0s (A2)

or, in compact notation
Z8G =g, (A3)

where the vectog =[0; qg] must be chosen so théGg = —Ggg. From (A3) we have
3G = (Zge) 10 = Z§ g0, (A4)
and hence, taking the definition gfinto account,
8Gg = Z§g08 (A5)
so that we must choose
s = —(Zgp) 'Gos. (AB)

Hence, first of all we obtain the inver@ ; = (Z5s) ! once, and then we invert only
the submatriXZ g of dimensionsg to obtaingg and then, from (A4)§G.
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